
Archives of Radiology V1 . I2 . 2018 4

Introduction

Gadolinium is a lanthanide-series, trivalent rare 
earth metal with paramagnetic properties, which has 
seen use in magnetic resonance imaging (MRI) as a 
contrast agent for three decades.  Through magnetic 
interactions with adjacent protons, gadolinium 
permits improved contrast in the tissues in which it 
accumulates.  While toxic in its free, aqueous ion form, 
gadolinium was long thought to be rendered non-toxic 
in complex with organic carrier ligands.  Indeed, thus 
chelated, its toxicity was shown to be comparable 
to iodinated X-ray contrast agents.  Some 20 years 
ago, however, the first reports of rare – but serious – 
adverse, scleroderma-like reactions to these contrast 
agents began to emerge in patients with impaired 
renal function, which was termed nephrogenic 
systemic fibrosis (NSF).  Per subsequently established 

guidelines, careful evaluation of kidney function prior 
to administration of gadolinium contrast agents (in 
line with guidelines for X-ray contrast agent use) all 
but eliminated the incidence of NSF.  

The last few years have seen gadolinium once again 
subject to scrutiny, following reports of gadolinium 
deposition in the brain, bone and other tissues in 
persons with normal kidney function.  The clinical 
significance of this gadolinium accumulation, 
however, is still largely unclear.  Gadolinium-based 
contrast agents, gadolinium deposition and so-called 
gadolinium deposition disease will be discussed 
herein.

MRI and Gadolinium(III)-Based Contrast 
Agents
Using radiofrequency (RF) pulses of an appropriate 
frequency to excite protons’ (particularly those in 
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Abstract

Gadolinium based contrast agents (GBCA) have been used for several decades for MR imaging. These 
have generally been considered safe. In the past, some of these were found to be associated with nephrogenic 
systemic fibrosis in patients with impaired renal function, that were eventually discarded. More recently, there 
has been an ongoing debate due to evidence of gadolinium deposition in the brain, bones and other tissues in 
people with normal renal function. The linear gadolinium-based contrast agents have been particularly found 
to be associated with this phenomena. The clinical significance of gadolinium deposition is not entirely certain 
and remains a matter of debate, particularly since macrocyclic are increasingly being preferred over linear 
regions. Different regulatory agencies are looking into evidence and whether use of gadolinium based contrast 
agents needs to be restricted for clinical use.

The current article is intended to serve as a review of the literature about GBCAs, review of relevant studies and 
potential clinical implications regarding use of these agents.
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water and fat) nuclear spin energy transitions, MRI 
permits the measurement of the RF signal emitted 
by these protons as they relax back into equilibrium 
with strong magnetic field gradients, and allows their 
localisation in space.  Paramagnetic metal ions such 
as gadolinium(III) (Gd3+) produce oscillating magnetic 
fields via thermally driven motion, and thereby 
increase the rate of decay in the polarisation of nearby 
protons in the magnetic field; this shortens the so-
called T1 (or “spin-lattice relaxation”) relaxation time, 
and increases the signal detected on T1-weighted MRI 
sequences where Gd3+ is present. 

Gadolinium(III)-based contrast agents (GBCAs) 
are organic carrier molecules which chelate Gd3+, 
significantly reducing their toxicity (1).  Most 
commonly used in MR angiography studies and in the 
investigation of brain tumour enhancement, GBCAs 
have been in use for 30 years, and used in contrast-
enhanced MRI studies of well over 100 million patients 
(2).  Indeed, in 2016, some 30 – 45% of all MRI studies 
performed used GBCAs (3).   

The European Medicines Agency (EMA) classifies 
GBCAs according to their charge (ionic or non-ionic) 
and their geometry (linear or macrocyclic).  Macrocyclic 
GBCAs enclose Gd3+ ions in “claw”-like structures, 
exhibiting markedly lower dissociation constants than 
their linear (and earlier-developed) counterparts (4).  
Because the toxic effects of gadolinium are believed 
to arise from its competition with Ca2+ cations (1) in 
its free, aqueous form, GBCAs with lower dissociation 
constants (i.e. those which least allow dissociation 
of free Gd3+) are classed as low-risk.  Linear GBCAs 
are distributed across intermediate- and high-risk 
classes, depending on whether they are ionic (and 
therefore less able to cross the blood-brain barrier; 
intermediate risk) or non-ionic (more likely to cross; 
high risk).

Low-risk, macrocyclic GBCAs include Dotarem 
(gadoterate meglumine), Gadovist (gadobutrol) and 
ProHance (gadoteridol).  Intermediate-risk, linear, 
ionic GBCAs include Magnevist (gadopentetate 
dimeglumine), MultiHance (gadobenate dimeglumine) 
and Primovist (gadoxetate disodium).  Highest risk 

are those non-ionic linear GBCAs such as Omniscan 
(gadodiamide) and OptiMARK (gadoversetamide). 

The utility of GBCAs in investigating brain tumour 
enhancement was based on the observation that 
ordinarily, due to their hydrophobicity, GBCAs do not 
cross the blood-brain barrier; areas of T1-weighted 
signal enhancement therefore indicated GBCA leak 
into brain tissue, due to tumour-induced degradation 
of the blood-brain barrier.  Under such circumstances, 
these contrast-enhancing lesions should only remain 
hyperintense for 30 minutes (5).  

Even in patients with normal kidney function, however, 
evidence began to emerge that gadolinium could be 
retained after GBCA exposure, even many years later. 
It is now understood that over time, GBCAs are able 
to pass even competent, intact blood-brain barriers, 
via a variety of proposed mechanisms, such as specific 
metal transporters, transmetallation (i.e. substitution 
of Gd3+ by other metal and metalloid ions, such as Zn2+, 
Cu2+ and Ca2+), interactions with the glymphatic system 
and/or perivascular spaces (3,6).  This gadolinium 
accumulation is reflected by changes in unenhanced 
T1-weighted brain MRI appearances.  

Gadolinium Deposition in the Brain
Evidence of gadolinium deposition and long-term 
retention in the brain was first shown retrospectively, 
in a study by Kanda et al. in 2013, wherein they 
found persistent T1 shortening in deep grey matter 
structures – specifically the globus pallidus (GP) of 
the basal ganglia and the dentate nuclei (DN) of the 
cerebellum – associated with exposure to linear 
GBCAs (7).  Nineteen patients with brain tumours, 
each of whom had undergone at least 6 examinations 
with linear GBCAs such as Magnevist/gadopentate 
dimeglumine and/or Omniscan/gadodiamide, were 
compared with 16 control patients, who had each 
undergone at least 6 unenhanced MRI studies.  Kanda 
et al. found that only those patients who had been 
exposed to linear GBCAs showed T1 shortening in their 
deep grey matter nuclei on MRI, with increased DN to 
pons (DNP) and GP to thalamus (GPT) ratios of signal 
intensity on T1-weighted sequences.  Moreover, this 
increase in T1-weighted signal intensity correlated to 
the patients’ administered dose.
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Later studies demonstrated increased DNP T1w signal 
intensity after Omniscan/gadodiamide exposure in 
patients with relapsing-remitting multiple sclerosis 
(8) and in patients with meningiomas  (9).  The 
relationship was, again, dose-dependent – even in 
those patients who had undergone fewer than 6 GBCA-
enhanced MRI studies. 

Across numerous studies, the dentate nuclei were 
consistently found to be the principal site of T1-
weighted signal intensity increase in response to GBCA 
administration (7,10–14).  The dentate nuclei are 
adjacent to the choroid plexus of the fourth ventricle, 
thought to be involved in heavy metal/metalloid ion 
sequestration (15), which may in part explain the 
preferential gadolinium deposition therein; but the 
dentate nuclei are themselves a preferential site of 
metallic ion and calcium accumulation (16,17).  In any 
event, with increasing linear GBCA exposure, other 
structures begin to show deposition of gadolinium as 
well, as shown by Zhang et al. (2016): thirteen patients, 
each of whom had undergone at least 35 linear-GBCA-

enhanced MRI studies, were investigated and found 
to have increased T1-weighted signal intensity in not 
only the DN and GP, but also in the superior cerebellar 
peduncle, the superior and inferior colliculi, the red 
nucleus, the thalamus and the substantia nigra (18).  
These structures are also believed to be involved in 
metal and metalloid ion sequestration (19). 

GBCA structure appears to be an important factor 
in determining gadolinium retention in the brain, 
with T1 shortening in the dentate nuclei seen after 
exposure to Magnevist/gadopentate dimeglumine (a 
linear GBCA), but not after exposure to ProHance/
gadoteridol (a macrocyclic GBCA) (10).  Numerous 
subsequent studies bore out this observation, with 
dose-dependent increases in T1-weighted DN signal 
intensity observed only with exposure to linear 
GBCAs; not to macrocyclic GBCAs (14,20–22).  Indeed, 
whether by conventional methods (20,23) or newer, 
relaxometry-based methods (24), no evidence for T1 
shortening with exposure to macrocyclic GBCAs could 
be found.  Investigating gadolinium-retention-induced 
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susceptibility changes in the DN by quantitative 
susceptibility mapping (QSM) also revealed higher 
values in patients exposed to linear GBCAs than in 
patients who had not (25); patients who had been 
exposed only to macrocyclic GBCAs were found to 
have susceptibility values in their DN similar to those 
of the unexposed, control group.

These data are entirely consistent with the hypothesis 
that gadolinium brain deposition is related to the 
propensity of gadolinium to dissociate from its 
chelating carrier molecule (26), where linear GBCAs 
far more readily release Gd3+ from complex than do 
macrocyclic GBCAs.

While gadolinium deposition in the brain undoubtedly 
gives rise to T1-weighted signal intensity changes, 
there may be certain conditions which show the same 
(or similar) MRI changes in the absence of gadolinium 
deposition; such mimics include Wilson’s disease, post-
radiotherapy changes and hepatic encephalopathy 
(27).  QSM-based MRI studies may help to discriminate 
susceptibility changes arising from calcification 
from those arising from paramagnetic metals (e.g. 
gadolinium) (28).

Unsurprisingly, studies employing autopsy findings of 
gadolinium brain deposition have been far fewer than 
those employing unenhanced MRI studies; nevertheless, 
what few have been published show similar results.  
Kanda et al. (2015) describe, in 5 persons who had 
undergone more than 2 administrations of Magnevist/
gadopentate dimeglumine and/or Omniscan/
gadodiamide, gadolinium deposition in the DN and 
GP, and to a lesser extent, in cerebellar white matter 
tracts, and the cortex and white matter tracts of the 
frontal lobe (29).  In control subjects, no gadolinium 
was found deposited in any structures of the brain.

Gadolinium deposition has been investigated in 
several studies using rat models, the results of which 
largely recapitulate the observations made in human 
subjects: gadolinium deposition is dose-dependent, 
highest with linear GBCAs, absent with macrocyclic 
GBCAs, and preferentially occurs in deep grey matter 
structures homologous to those in the human brain.  
Comparing the administration of various linear 
GBCAs (Omniscan/gadodiamide, MultiHance/
gadobenate dimeglumine and Magnevist/gadopentate 
dimeglumine) with the administration of either 
Dotarem/gadoterate meglumine or of saline vehicle 

control in rats resulted in increased T1-weighted 
signal intensity in the deep cerebellar nuclei (DCN), 
which was highest with Omniscan/gadodiamide, and 
absent with Dotarem/gadoterate meglumine (30,31).  
Those rats exposed to linear GBCAs were found to have 
gadolinium deposition in the brains on post-mortem 
dissection, whereas those exposed to Dotarem/
gadoterate meglumine and vehicle control were not.  
Another similar study demonstrated an increased DCN 
to pons signal intensity ratio in rats on T1-weighted 
sequences in response to linear GBCAs, which was 
not demonstrated in response to macrocyclic GBCAs 
or saline control (32).  Again, among the linear GBCAs 
tested, the MRI changes were most pronounced with 
Omniscan/gadodiamide.

Gadolinium Deposition in Bone and 
Other Tissues
The bone is another major site of gadolinium 
accumulation (33) via its exchange for Ca2+, and as such, 
has been hypothesised to act as a significant reservoir 
of gadolinium with respect to its persistence elsewhere 
in the body (34).  Even in persons with normal kidney 
function, 0.25 – 1% of injected gadolinium may 
dissociate from its ligand and deposit in bone (35).  
In consequence, bone measures of gadolinium have 
been proposed as a potentially useful proxy for brain 
gadolinium levels (36), especially since MRI studies 
may underrepresent “true” gadolinium concentrations 
(since some gadolinium in the brain is likely to exist in 
an insoluble, and therefore magnetically inert, form). 

One means of investigating concentrations of 
gadolinium in bone is made possible by examining 
resected femoral heads from patients following total 
hip arthroplasty.  In two such studies, using femoral 
heads resected from patients 3 to 8 days after they had 
been exposed to either the linear GBCA Omniscan/
gadodiamide or the macrocyclic GBCA ProHance/
gadoteridol, gadolinium concentrations were found 
to be 2.5 – 4 times higher in those patients who had 
received Omniscan/gadodiamide (37,38).  Even up to 
8 years after GBCA exposure, high levels of gadolinium 
have been found in resected femoral heads (35).  

Skin, too, appears to be subject to gadolinium 
accumulation after exposure to GBCAs, with 
gadolinium having been demonstrated at autopsy 
in subjects with normal renal function (36).  While 
concentrations were found to be higher following 
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linear GBCA exposure, gadolinium was also detected 
after exposure to macrocyclic GBCAs.  In rat models, 
gadolinium deposition has also been shown (39,40), 
and has been found to be higher following linear GBCA 
exposure than following macrocyclic GBCAs (41).

Clinical Significance of Gadolinium 
Deposition and Gadolinium Deposition 
Disease
Aside from acute and anaphylactoid adverse reactions 
to GBCAs, which are rare (0.08 – 0.12%) (42,43), and 
apart from nephrogenic systemic fibrosis, which has 
all but disappeared following changes to guidelines 
requiring careful evaluation of GFR prior to GBCA 
administration (44), there are very few recognised 
clinical features of gadolinium deposition.  No 
association has been found, for example, between 
gadolinium exposure and Parkinsonism (45,46), 
despite evidence of accumulation in the basal nuclei 
– including the substantia nigra, specifically, at higher 
doses (18).   

Nevertheless, since 2014, there have been sporadic 
reports of what has been tentatively termed gadolinium 
deposition disease (GDD) (47,48) in patients with 
normal renal function, whose symptoms cannot be 
explained by other/subsequent diseases and in whom 
gadolinium has been demonstrated (either in urine, 
hair or saphenous veins) (48,49).  The symptoms 
allegedly attributed to GDD are myriad, but include 
tightness and/or pain in the limbs (especially distally), 
tightness and/or pain in the central torso and/or 
generalised pain, bone pain, and general confusion/
impaired cognition (47,48).  Symptoms have been 
reported hours to months after exposure, but the 
majority have been described as occurring within 
the first month; those who described distal limb pain 
felt that this persisted beyond the other symptoms 
(48).  Unusually, however, these symptoms have been 
reported for all GBCAs, regardless of structure, with 
the sole exception of Dotarem/gadoterate meglumine, 
and have been reported even after only one exposure 
(48,49); features which do not correlate well with 
the current understanding of dose- and structure-/
class-dependent gadolinium in the body.  That all 
the symptoms have been self-reported (by only 42 
patients), collected by anonymous survey, involved 
no control group, and gathered at one research centre 
significantly hamper the meaningful interpretation of 

these data.  A much more rigorous evaluation of the 
incidence of (presumed) GDD is doubtless warranted, 
but no evidence at present time yet suggests a 
reasonable link between these symptoms and GBCAs.

The repercussions of the phenomenon of Gadolinium 
deposition without definite evidence of adverse 
clinical outcomes are unclear, more particularly in 
context of macrocyclic agents. Currently, there is an 
ongoing debate whether GBCAs should be restricted 
in use or more stringent guidelines be produced. 
Various agencies and government bodies are looking 
into it and while there are no current guidelines that 
overtly restrict their use, it is likely that more specific 
guidelines will be produced particularly if more 
evidence emerges for any adverse clinical outcomes. In 
the meanwhile, it will be prudent if some self restraint 
be imposed with judicious use of these agents and 
limiting the use in context of both the dosage and 
frequency of such examinations.

Conclusions
Gadolinium-based contrast agents are an invaluable 
tool in conjunction with MR imaging, and, despite 
rare (though serious) adverse reactions in the form 
of anaphylactoid reactions and nephrogenic systemic 
fibrosis, have an excellent safety record.  Recent 
years have seen a sizeable body of literature emerge 
concerning gadolinium deposition in the brain (and 
other tissues) and the MRI changes which accompany 
it, but no significant evidence yet exists in support of 
any associated clinical features.  Moreover, what little 
gadolinium deposition which has been demonstrated 
seems to be obviated by favouring macrocyclic 
contrast agents over earlier, linear chelates.  Further 
work is wanted to evaluate so-called gadolinium 
deposition disease, but at present, there seems to be 
little cause for concern. It will be prudent, however, 
that these agents be used judiciously and excessive 
use be avoided since the research is still ongoing and 
criteria for their optimum use are still evolving.
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